

gitversion Setuptools Extension

[image: Version] [https://pypi.python.org/pypi/setupext-gitversion] [image: Downloads] [https://pypi.python.org/pypi/setupext-gitversion] [image: Status] [https://travis-ci.org/dave-shawley/setupext-gitversion] [image: License] [http://opensource.org/licenses/BSD-3-Clause] [image: Docs] [https://setupext-gitversion.readthedocs.org/]

Wait... Why? What??

PEP440 [https://www.python.org/dev/peps/pep-0440] codifies a version scheme for Python packages. This setuptools [https://pythonhosted.org/setuptools/]
extension will generate Developmental Release [https://www.python.org/dev/peps/pep-0440/#local-version-identifiers] and Local Version Label [https://www.python.org/dev/peps/pep-0440/#local-version-identifiers]
segments that identify the revision that is being built. PEP440 [https://www.python.org/dev/peps/pep-0440] defines
the following format for Python package versions:

version = [epoch "!"] public-version ["+" local-version]
epoch = digit+
public-version = release-segment [pre-segment] [post-segment] [dev-segment]
local-version = (letter | digit)+ ["." (letter|digit)+]
release-segment = digit+ ("." digit+)*
pre-segment = "a" digit+ | "b" digit+ | "rc" digit+
post-segment = ".post" digit+
dev-segment = ".dev" digit+

It also recommends that package indecies only accept final releases which
are defined as having a version that consists of only a release segment and
an optional epoch. So why did I go through all of the trouble to create an
extension for managing versions that should not be submitted to a package
index? If you develop Python packages that are used inside the walls of a
business, then you probably know exactly why – using a local Python Package
Index that holds non-public packages is commonplace. It is also common to
stage pre-release packages and builds from a CI server in an internal index.
This is where this extension comes into play. It provides a consistent way
to manage package versions throughout all stages of development.

Let’s look at the state of this project as I am writing this document. The
git history looks like the following:

* 3fdc192 - (HEAD, origin/initial-implementation, initial-implementation)
9 more commits here
* 7ca1fd2 - (origin/master, master)
* 87d944e - Merge pull request #1 from dave-shawley/reorg (6 days ago)
|\
| * 04d0cca - (origin/reorg, reorg)
| ###### 9 more commits here
|/
* bd7ad3c - (tag: 0.0.0) SYN (4 months ago)

When I run setup.py git_version it sets the version to 0.0.0.post1.dev11.
The 0.0.0 portion is the release segment that is passed to the setup
function in setup.py. The extension finds that tag in the history and
counts the number of merges that have occurred since that tag – this value
becomes the post version segment. In this case there has only been a single
merge. Then it counts the number of commits since the last merge occurred –
this value becomes the development version segment.

How?

The easiest way to use this extension is to install it into your build
environment and then use it from the command line when you generate and upload
your distribution.

	pip install setupext-gitversion into your build environment

	Add the following lines to your setup.cfg:

[git_version]
version-file = LOCAL-VERSION

	Add the following line to your MANIFEST.in:

include LOCAL-VERSION

	Modify your setup.py to append the contents of LOCAL-VERSION
to your version keyword:

version_suffix = ''
try:
 with open('LOCAL-VERSION') as f:
 version_suffix = f.readline().strip()
except IOError:
 pass

setup(
 # normal keywords
 version='1.2.3' + version_suffix,
)

Where 1.2.3 is the tag of the last release package.

	Add git_version to your upload or distribution generation
command. You want to use something like the following:

setup.py git_version sdist upload
setup.py git_version bdist_egg upload

And that’s it. That will embed SCM information into your package when
your build a distribution. It is also smart enough to generate an empty
suffix for a build from a tagged commit.

Ok... Where?

	Source
	https://github.com/dave-shawley/setupext-gitversion

	Status
	https://travis-ci.org/dave-shawley/setupext-gitversion

	Download
	https://pypi.python.org/pypi/setupext-gitversion

	Documentation
	http://setupext-gitversion.readthedocs.org/en/latest

	Issues
	https://github.com/dave-shawley/setupext-gitversion

Documentation

	Usage
	Command Line Synopsis

	setup.cfg Example

	Version Calculation
	Public Version

	Pre Release Segment

	Post Release Segment

	Development Release Segment

	Local Segment

	Setting up your environment

Changelog

	1.1.1 [https://github.com/dave-shawley/setupext-gitversion/compare/1.1.0...1.1.1] (18-Aor-2017)
	Clean up MANIFEST.in

	1.1.0 [https://github.com/dave-shawley/setupext-gitversion/compare/1.0.1...1.1.0] (6-Jan-2015)
	Add –committish command line flag.

	1.0.1 [https://github.com/dave-shawley/setupext-gitversion/compare/1.0.0...1.0.1] (3-Jan-2015)
	Switch from using drone.io to travis-ci.org

	1.0.0 [https://github.com/dave-shawley/setupext-gitversion/compare/0.0.0...1.0.0] (3-Jan-2015)
	Update metadata version based on tag and git repo state.

	Write local version to file when –version-file is specified.

Usage

Command Line Synopsis

Usage: setup.py git_version [options] packaging-command

The git_version setuptools command updates the package’s version
metadata based on repository information. Since the update is only done on
the metadata in-memory, this is only really useful in the same setup.py
execution as a packaging command such as sdist or one of the bdist
variants.

	
-C, --committish

	Include the abbreviated version of the most recent committish as
the local portion of the version number.

	
-V FILE, --version-file FILE

	Writes the local segment of the version to FILE in addition to
setting the in-memory version.

setup.cfg Example

[git_version]
version-file = LOCAL-VERSION

Version Calculation

PEP 440 [https://www.python.org/dev/peps/pep-0440] defines a Python Package’s version using the following grammar.

version ::= [epoch "!"] public ["+" local]
epoch ::= digit [https://docs.python.org/2/reference/lexical_analysis.html#grammar-token-digit]+
public ::= release [pre][post][dev]
release ::= digit [https://docs.python.org/2/reference/lexical_analysis.html#grammar-token-digit]+ ("." release)*
pre ::= "pre" digit [https://docs.python.org/2/reference/lexical_analysis.html#grammar-token-digit]+
post ::= "post" digit [https://docs.python.org/2/reference/lexical_analysis.html#grammar-token-digit]+
dev ::= "dev" digit [https://docs.python.org/2/reference/lexical_analysis.html#grammar-token-digit]+
local ::= (letter [https://docs.python.org/2/reference/lexical_analysis.html#grammar-token-letter] | digit [https://docs.python.org/2/reference/lexical_analysis.html#grammar-token-digit])+ ("." local)*

Public Version

The public portion of the version identifier is managed by your package. The
best practice for managing the public version is to simply embed it within your
package as a top-level attribute named __version__ or version. You
should use the version attribute to calculate the value passed to as the
version keyword to setuptools.setup().

setup.py
import setuptools
import mypackage

setup(
 name='mypackage',
 version=mypackage.__version__,
 # ...
)

This extension searches for a git tag matching the public portion of the
version keyword and uses it as the basis for constructing the post and
development release segements.

Pre Release Segment

This extension does not define a value for the pre-release segment.

Post Release Segment

This extension defines the post-release segment as the number of merges
since the tag associated with your package’s version.

Development Release Segment

This extension defines the development release segment as the number of
commits since the last merge.

Local Segment

This extension defines the local identifier as the first seven characters
of the most recent commit. The local identifier is only included if the
--committish flag is included and either the post or development
segment is defined.

Setting up your environment

The easiest way to start working with this code is to set up a virtual
environment and run env/bin/pip -r dev-requirements.txt. That will
install the necessary testing tools. Then you can run everything else
using env/bin/python setup.py:

	setup.py nosetests will run the tests using nose to test against the
and generate a coverage report to stdout.

	setup.py build_sphinx will generate HTML documentation into
build/doc/html. This is the doc set that is uploaded to Read The Docs.

	setup.py flake8 will run the flake8 utility and report on any
static code analysis failures.

Index

 Symbols
 | P
 | S

Symbols

 	
 	
 -C, --committish

 	setup.py-git_version command line option

 	
 	
 -V FILE, --version-file FILE

 	setup.py-git_version command line option

P

 	
 	
 Python Enhancement Proposals

 	PEP 440

S

 	
 	
 setup.py-git_version command line option

 	-C, --committish

 	-V FILE, --version-file FILE

 nav.xhtml

 Table of Contents

 		gitversion Setuptools Extension

 		Usage

 		Command Line Synopsis

 		setup.cfg Example

 		Version Calculation

 		Public Version

 		Pre Release Segment

 		Post Release Segment

 		Development Release Segment

 		Local Segment

 		Setting up your environment

_static/file.png

_static/plus.png

_static/comment.png

_static/down.png

_static/up.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/up-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/minus.png

